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Abstract

• ASR: Previous	attempts	increasing	the	number	of	CNN	layers	
from	2	to	3	gave	a	degradation.
• CV:	Recent	work	in	image	shows	that	the	accuracy	of	image	
classification	can	be	improved	by	increasing	the	number	of	
convolutional	layers	with	carefully	tuned	architecture.
• ASR:	Very	Deep	Convolutional	Neural	Networks	uses	up	to	
10	convolutional	layers	and	gets	a	WER	of	8.81%	on	Aurora4,	
which	is	the	best	published	result.
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Review	of	Convolutional	Neural	Networks

• A	Conventional	Convolutional	Neural	Network	(CNN)
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Review	of	Convolutional	Neural	Networks

• Convolution	and	Pooling	(Subsampling)
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Model	Description

• Context	Window	Extension
• A	typical	size	of	input	features	in	speech	recognition	is	11	x	
40,	where	11	denotes	the	number	of	frames	in	a	window,	40	
denotes	the	dimension	of	FBank	features.	[*]

• Using	this	context	window	size,	convolutions	can	be	
performed	in	time	5	times	with	a	filter	size	of	3,	as	in	the	
following	figure	(vd6).
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Model	Description

• Context	Window	Extension	(cont’d)
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Model	Description

• Context	Window	Extension	(cont’d)
• In	Very	Deep	Convolutional	Neural	Networks	(VDCNNs),	the	
context	window	size	is	extended	to	17	(and	further	to	21),	
which	allows	8	(and	10)	convolutions	to	be	performed	in	
time,	respectively.
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Model	Description

• Context	Window	Extension	(cont’d)
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Model	Description

• Context	Window	Extension	(cont’d)
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Model	Description

• Feature	Dimension	Extension
• Based	on	40-dim	FBank	features,	at	most	6	convolutions	and	
2	poolings	can	be	performed	in	frequency,	leading	to	the	vd6	
model.
• In	VDCNN,	the	FBank	features	are	extended	to	64-dim,	so	
that	4	more	convolutions	can	be	performed	in	frequency.
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Model	Description

• Feature	Dimension	Extension	(cont’d)
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Model	Description

• Feature	Dimension	Extension	(cont’d)
• Finally	the	input	extension	is	performed	in	both	time	and	
frequency,	leading	to	a	17	x	64	input.	The	resulting	model	is	
named	vd10.
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Model	Description

• Feature	Dimension	Extension	(cont’d)
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Model	Description

• Feature	Dimension	Extension	(cont’d)
• The	full-ext model	further	extends	the	number	of	time	
frames	to	21	so	that	2	more	convolution	operations	can	be	
performed	in	time,	giving	10	convolution	operations	in	both	
time	and	frequency.
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Model	Description

• Feature	Dimension	Extension	(cont’d)
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Model	Description

• Feature	Dimension	Extension	(cont’d)
• To	confirm	that	the	performance	gain	is	not	from	the	
extended	input	features,	a	model	with	the	same	wider	input	
features	(17	x	64)	but	shallow	convolutional	layers	is	
developed.
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Model	Description

• Feature	Dimension	Extension	(cont’d)
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Model	Description

• Pooling	in	Time
• You	may	have	noticed	that	the	VDCNN	models	all	use	pooling	
in	frequency	and	do	no	pooling	in	time.
• To	investigate	whether	pooling	in	time	is	helpful,	vd10-tpool	
is	designed.
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Model	Description

• Pooling	in	Time	(cont’d)
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Model	Description

• Pooling	in	Time	(cont’d)
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Model	Description

• Padding	in	Feature	Maps
• In	most	work	on	CNNs	for	speech	recognition,	the	
convolutions	are	performed	without	padding.
• Padding	can	save	the	size	of	feature	maps	and	better	utilize	
the	border	information.
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Model	Description

• Padding	in	Feature	Maps	(cont’d)
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Model	Description

• Padding	in	Feature	Maps	(cont’d)
•Model	vd10-fpad	pads	only	in	frequency,	allowing	more	
pooling	operations	in	frequency.
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Model	Description

• Padding	in	Feature	Maps	(cont’d)

28



Model	Description

• Padding	in	Feature	Maps	(cont’d)
• Padding	in	both	dimensions	is	also	applied,	which	is	
indicated	as	vd10-fpad-tpad.
• In	this	model,	considering	that	pooling	is	a	necessary	
approach	to	reduce	the	feature	map	size,	pooling	in	time	is	
also	applied.
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Model	Description

• Padding	in	Feature	Maps	(cont’d)
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Model	Description

• Padding	in	Feature	Maps	(cont’d)
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Model	Description

• Complete	Figure
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Model	Description

• Complete	Figure	(cont’d)
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Model	Description

• 1	Channel	vs.	3	Channels	Based	Input	Feature	Maps
• VDCNNs	use	one	channel	feature	map	as	input,	i.e.	the	static	
FBank	feature.
•Most	work	in	speech	recognition,	however,	uses	three-
channel	features	(static,	∆,	and	∆∆).
• The	number	of	input	channels	are	compared	for	VDCNN.
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Model	Description

• 1	Channel	vs.	3	Channels	Based	Input	Feature	Maps	(cont’d)
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Model	Description

• 1	Channel	vs.	3	Channels	Based	Input	Feature	Maps	(cont’d)
• It	is	interesting	to	find	that	1	channel	base	VDCNNs	are	
better	than	the	models	using	3	channels.
• One	possible	explanation	would	be	that	the	information	in	
the	dynamic	features	may	be	better	extracted	from	the	raw		
static	features	directly	by	VDCNN.
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Model	Description

• 1	Channel	vs.	3	Channels	Based	Input	Feature	Maps	(cont’d)
• Another	explanation	may	be	as	follows.
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Model	Description

•Model	Parameter	Size
• It	is	observed	that	although	the	number	of	convolutional	
layers	is	increased	significantly	in	the	proposed	VDCNN,	the	
total	parameter	size	is	smaller	than	the	baseline	CNN	and	
DNN.
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Model	Description

•Model	Parameter	Size	(cont’d)
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Model	Description

• Convergence	of	Very	Deep	CNNs
• The	VDCNN	converges	faster	than	other	model	types,	in	
terms	of	the	number	of	epochs[*].
• Accordingly,	although	VDCNNs	need	more	computations	in	
each	iteration	(9.5	times	more	computations	compared	to	
the	baseline	CNN),	the	VDCNNs	take	comparable	time	for	
model	training.
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Model	Description

• Convergence	of	Very	Deep	CNNs	(cont’d)
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Model	Description

• Noise	Robustness	of	Very	Deep	CNNs
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Model	Description

• Noise	Robustness	of	Very	Deep	CNNs	(cont’d)
• To	better	understand	how	VDCNN	processes	noisy	speech,	
each	condition	(A,	B,	C	or	D)	of	this	frame	is	propagated	
through	the	best	performing	model	vd10-fpad-tpad.
• The	outputs	of	the	1st convolutional	layer	and	the	6th
convolutional	layer	for	A,	B,	C	and	D	are	plotted	in	the	next	
figures.
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Model	Description

• Noise	Robustness	of	Very	Deep	CNNs	(cont’d)

44



Model	Description

• Noise	Robustness	of	Very	Deep	CNNs	(cont’d)
• To	further	verify	the	observation,	the	differences	between	
noisy	feature	maps	and	clean	feature	maps	are	measured	for	
all	convolutional	layers.
• Using	data	in	the	test,	we	compute	the	averaged	mean	
square	error	(MSE)	to	evaluate	the	differences	between	the	
three	noisy	conditions	and	the	clean	condition.
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Model	Description

• Noise	Robustness	of	Very	Deep	CNNs	(cont’d)
• The	MSE	values	after	all	operations	are	show	below.
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Model	Description

• Noise	Robustness	of	Very	Deep	CNNs	(cont’d)
• The	MSE	values	for	different	CNN	models.
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Experiments

• Experimental	Setup
• The	GMM-HMM	system	is	built	with	Kaldi.
• All	neural	network	models,	including	DNN/CNN/LSTM,	are	
trained	using	CNTK.
• The	standard	testing	pipeline	in	Kaldi	recipes	are	used	for	
decoding	and	scoring.
• A	similar	structure	(IBM-VGG)	designed	by	researchers	in	
IBM	and	NYU	is	also	constructed	for	comparison.
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Experiments

• Evaluation	on	Aurora4
• Aurora4	is	a	medium	vocabulary	task	based	on	the	Wall	
Street	Journal	(WSJ0).
• Training	sets	contain	14276	utterances.
• Four	conditions,	A,	B,	C	and	D,	as	mentioned	before.
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Experiments

• Evaluation	on	Aurora4	(cont’d)
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Experiments

• Evaluation	on	AMI
• AMI	corpus	contains	around	100	hours	of	meeting	records.
• The	signal	was	captured	and	synchronized	with	multiple	
microphones	such	as	individual	head	microphones	(IHM,	
close-talk)	and	microphone	arrays	(single	distant	microphone	
(SDM)	and	multiple	distant	microphones	(MDM)).
•MDM	was	processed	by	a	standard	beamforming	algorithm	
to	generate	a	single	channel	dataset.
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Experiments

• Evaluation	on	AMI	(cont’d)
• The	size	of	input	features	is	investigated.
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Experiments

• Evaluation	on	AMI	(cont’d)
• The	effect	of	other	designs	are	also	investigated.
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Experiments

• Evaluation	on	AMI	(cont’d)
• To	better	explain	the	superiority	of	VDCNNs,	we	use	some	
related	feature	maps.
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Experiments

• Evaluation	on	AMI	(cont’d)
• One	same	single	synchronized	frame	is	propagated.
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Experiments

• Evaluation	on	AMI	(cont’d)
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Conclusion

• Features	of	VDCNN
• The	sizes	of	filters	and	pooling	templates	are	small.
• The	input	feature	maps	are	large.
• Other	design	such	as	pooling	in	time,	padding,	and	input	
feature	maps	selection	are	adjusted.
• On	Aurora4,	it	achieves	a	WER	of	8.81%	(state-of-art).
• On	AMI,	its	accuracy	is	competitive	to	an	LSTM.
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